• Приглашаем посетить наш сайт
    Бунин (bunin-lit.ru)
  • Морозов А.: Ломоносов
    Часть третья. IX. Естествоиспытатель

    Часть третья

    НАШ ПЕРВЫЙ УНИВЕРСИТЕТ

    «Он создал первый Университет. Он, лучше сказать, сам был первым нашим Университетом».

    А. С. Пушкин о Ломоносове

    Морозов А.: Ломоносов Часть третья. IX. Естествоиспытатель

    IX. ЕСТЕСТВОИСПЫТАТЕЛЬ

    «Испытание натуры трудно, слушатели, однако приятно, полезно, свято».

    М. В. Ломоносов  

    1. ХИМИЧЕСКАЯ ЛАБОРАТОРИЯ

    21 мая 1746 года Академия наук получила, наконец, долгожданного президента. Указом Елизаветы им был назначен граф Кирила Григорьевич Разумовский.

    Графу, благосклонно возглавившему всю тогдашнюю русскую науку, было ровно восемнадцать лет. Он родился 18 марта 1728 года в бедном хуторе Лемешах, на Украине, в семье казака, прозванного Розумом, так как он любил навеселе разговаривать с самим собою и восклицать, ни к кому, собственно, не обращаясь: «Що то за голова! Що то за рoзум!»

    В детстве Кирила пас волов, изредка вспоминая о своем родном брате Алексее, громогласном певчем, замеченном проезжавшим через их село Федором Вишневским и увезенном в Петербург, где он в 1731 году был принят в придворную капеллу. Тут-то на него и обратила внимание Елизавета.

    Алексей Разумовский разделил судьбу бесправной царевны и впоследствии тайно обвенчался с нею. После воцарения Елизаветы вся родня Разумовского была вызвана в Петербург. Одетая, как придворная дама, напудренная и нарумяненная казачиха Розумиха, когда ее привели во дворец, увидев себя в первом большом зеркале, с перепугу бросилась на колени, полагая, что ей навстречу идет сама царица. Назначенная статс-дамой, Розумиха поспешила оставить отведенные ей во дворце покои и воротилась в Лемеши, где, прикрыв шинок, который содержала ранее, зажила помещицей средней руки.

    В марте 1743 года по распоряжению Елизаветы Кирилу Разумовского отправили в чужие края под вымышленным именем Ивана Обидовского. Наставником его был избран молодой адъюнкт Григорий Теплов, подававший свои специмены вместе с Ломоносовым. Сын жены истопника, прозванный по этому случаю Тепловым, воспитанник Невской духовной семинарии, с помощью Феофана Прокоповича получивший хорошее образование, Теплов пренебрег науками. Все его помыслы были направлены к тому, чтобы проникнуть в светское общество, стать модным кавалером, если не вельможей. Он обладал хорошим голосом, пел «итальянскою манерою», играл на скрипке, сочинял музыку и рисовал. Эти приятные таланты завоевали расположение Алексея Разумовского, искавшего надежного гувернера для своего брата. Теплов повез обтесывать за границей юного Кирилу. Главною обязанностью его было наблюдать, чтобы Кирила на чужбине не пропускал причастия, не делал «в платье и галантерее излишества», научился фехтованию и «на лошадях ездить», а к «наукам принуждать, смотря по состоянию здоровья». Как соблюдали они там обряды православной церкви, не вполне ясно, но зато известно, что Теплова сильно огорчали картежные долги Кирилы.

    Теплов водил смышленого, но вялого Кирилу на лекции Леонарда Эйлера и приучал к обществу, иногда осторожно приоткрывая его инкогнито. Научившись говорить на двух языках, Кирила возвратился на родину с кучей льстивых дипломов, а появившись при дворе, очаровал всех своим «политесом» — галантностью и тонким обхождением. Полуграмотный Алексей Разумовский и восторженная Елизавета решили, что он и впрямь «произошел все науки». Кирила стал президентом Академии наук, а его наставник Теплов асессором Академической канцелярии. Теплов и Шумахер были давно знакомы. Когда Шумахер был арестован, Теплов открыто держал его сторону. Теперь же Шумахер изо всех сил «подбивался в дружбу» к Теплову, и между ними установились самые благожелательные отношения. Кирила при вступлении в должность президента произнес составленную Тепловым искусную речь с призывом к академикам направлять «труды к согласованию их с мыслью высокоблаженной и достославной памяти Петра Великого». Затем он милостиво удалился, выслушав ответ Шумахера, который от имени ученой коллегии заверил, что, соединив труды свои с попечением нового президента, Академия достигнет своей цели.

    Юный президент даже попытался заняться академическими делами и потребовал касающиеся до сего бумаги. Но перед ним выросла такая гора взаимных наветов, жалоб и претензий, что и у самого бывалого человека опустились бы руки. А терпеливый и почтительный Шумахер, каким-то чудом не потерявшийся в этой неразберихе, спокойно и обстоятельно докладывал обо всем, и все становилось ясно.

    А затем все пошло по-старому, и Шумахер получил возможность по-прежнему вершить судьбу Академии, разделяя свою власть с Тепловым.

    Вступление в должность нового президента надлежало ознаменовать чем-либо примечательным. В Академии были учреждены первые публичные лекции, притом на русском языке, а не на латыни. Душой этого начинания, конечно, был Ломоносов. Он же и открыл чтение лекций по составленной им программе. Ломоносов излагал учение о природе не как отвлеченное философствование. «Приступающим к учению натуральной философии предлагаются в Академиях прежде, как подлинное основание, самые опыты посредством пристойных инструментов, и присовокупляют к ним самые ближние и из опытов непосредственно следующие теории».

    Извещения о лекциях посылались в кадетский корпус, в Канцелярию главной артиллерии и фортификации, в Медицинскую канцелярию. В «Санкт-Петербургских Ведомостях», в № 50 от 24 июня 1746 года, было помещено описание первой лекции Ломоносова: «Сего июня 20 дня, по определению Академии Наук президента, ее императорского величества действительного камергера и ордена св. Анны кавалера его сиятельства графа Кирила Григорьевича Разумовского, той же Академии Профессор Ломоносов начал о физике экспериментальной на российском языке публичные лекции читать, причем сверх многочисленного собрания воинских и гражданских разных чинов слушателей и сам господин президент Академии с некоторыми придворными кавалерами и другими знатными персонами присутствовал».

    Среди неприметных гражданских и военных чинов из специальных ведомств — нашлись люди, для которых слова Ломоносова не пропали бесследно. Даже то, что благородные невежды в напудренных париках и шелковых камзолах почли своим долгом небрежно поскучать на лекции, свидетельствовало о росте хотя бы внешнего уважения к русской науке. Но вскоре двор разъехался на лето, и лекции прекратились.

    Не лишенный природного ума, Кирила Разумовский испытывал «невольное почтение» к Ломоносову, как выразился биограф Разумовских Васильчиков. Однако оценить по-настоящему Ломоносова, а тем более вникнуть в его нужды, он не мог. Но при нем все же сдвинулся с места наболевший вопрос о химической лаборатории.

    «Хотя имею я усердное желание в химических трудах упражняться и тем отечеству честь и пользу приносить, — писал он в третьем своем рапорте в 1745 году, — однако без лаборатории принужден только одним чтением химических книг и теориею довольствоваться, а практику вовсе оставить и для[39] того со временем отвыкнуть». Гениальный ученый, физик и химик в лучшие годы своей жизни был лишен экспериментальной базы для своих исследований.

    В середине декабря того же 1745 года Ломоносов составляет прошение в Сенат от имени всего профессорского собрания. Но и в сенате дело застряло. И только после вступления в должность Разумовского, 1 июля 1746 года последовал именной указ «построить по приложенному при том чертежу» химическую лабораторию на счет кабинета.

    Строили лабораторию с невероятными проволочками. Различные ведомства препирались из-за места, которое должно быть отведено под лабораторию. Лабораторию было, наконец, решено строить во дворе того самого Боновского дома, где по-прежнему жил Ломоносов.

    Семья его выросла, он стал профессором, а ему приходилось все еще ютиться в тесных и холодных комнатушках, отведенных ему, когда он только что вернулся из-за границы. А совсем рядом освобождалась просторная квартира. В мае 1747 года Шумахер настоял перед Разумовским на увольнении Сигизбека. Но выселить его из дома оказалось не так просто. Сигизбек заупрямился и отказался выехать. Шумахер решил напустить на него Ломоносова. Около этого времени за границу отъехал академик Гмелин. Гмелин дал обещание через несколько лет возвратиться в Россию, а Академия наук продолжала считать его своим членом. Более того, Ломоносов и Миллер поручились за него половиною своего годового жалованья. Интересен мотив, побудивший Ломоносова поручиться за Гмелина. Он почувствовал к нему расположение, наслышавшись от Степана Крашенинникова «о гмелиновом добром сердце и склонности к российским студентам», которым Гмелин давал в Сибири лекции, «таясь от Миллера». Хорошее отношение к русским людям, ищущим знания, — вот что всегда ценил Ломоносов!

    Шумахер измыслил, как разом обеспечить Гмелину квартиру, выгнать упрямого Сигизбека и сделать вид, что он готов облагодетельствовать Ломоносова.

    Академическая канцелярия вынесла определение: «до приезду реченного доктора Гмелина в ботаническом доме жить химии профессору Ломоносову, а отрешенного профессора Сигизбека надзирателю строений Боку к выезду с того двора понудить». Так в начале августа 1747 года Ломоносов с некоторым треском переехал на новую квартиру. Согласно академической описи, квартира Сигизбека состояла из пяти жилых покоев, в каждом изразцовая голландская печь, обитая красными или зелеными шпалерами и холстом. «В тех покоях от течи скрозь кровли потолки и от мокроты гзымзы (кирпичи), також и двери и в некоторых местах полы, ветхие. Да идучи со двора в сенях потолки ветхие ж. Також и трубы растрескались». Но Ломоносов смог в этой квартире разместиться посвободней.

    ***

    В самом начале 1748 года Леонард Эйлер письмом на имя президента уведомил, что Берлинская Академия наук объявила на будущий 1749 год конкурс на лучшее сочинение о происхождении селитры. «Я сомневаюсь, — писал Эйлер, — чтобы кто-либо, кроме господина Ломоносова, мог написать, об этом лучше, почему и прошу убедить его приняться за эту работу». От внимательного взора Эйлера не ускользнуло, что Ломоносов пролагает новые пути в науке. «Из ваших сочинений с превеликим удовольствием я усмотрел, что вы в истолковании химических действий далече от принятого у химиков обыкновения отступили», — писал он Ломоносову 23 марта 1748 года.

    Множество дел и придворных поручений, в особенности хлопоты по окончанию химической лаборатории, не позволяли Ломоносову углубиться в подробную разработку этой темы, хотя она его очень интересовала, ибо он связывал ее с целым рядом других физических и химических проблем — своей теорией упругости воздуха, вопросом о теплоте и природе горения, молекулярным строением вещества и пр. Приступить к диссертации он сумел лишь в середине января 1749 года, за два месяца до срока представления. «Пока я упражнялся в обработке третьей главы, — сообщал он Эйлеру, — жена моя родила дочь, и из-за этого я едва-едва закончил свой труд»[40].

    Незадолго перед тем была закончена химическая лаборатория. Сооружение этого маленького здания отняло у Ломоносова много сил. Изо дня в день, из месяца в месяц ему приходилось теребить не только Академическую канцелярию, но и Соляной комиссариат, и Канцелярию главной артиллерии и фортификации, и Монетную и Медицинскую канцелярии, куда он обращался в поисках нужных материалов, посуды и оборудования.

    Точная дата открытия лаборатории не была записана. Ломоносов занял ее в середине октября 1748 года, как только представилась возможность и постепенно обжился в ней. Это было небольшое приземистое зданьице — в полтора этажа — с черепитчатой кровлей и окнами, заложенными с одной стороны красным кирпичом, что придавало ему невзрачный вид. Оно занимало всего шесть с половиною сажен в длину, пять в ширину и около семи аршин в высоту. Все внутреннее сводчатое помещение состояло из одной большой комнаты с очагом, с широким дымоходом посредине, и двух крошечных каморок. В одной читались лекции немногочисленным студентам и стояли точные весы, в другой хранились химические материалы и посуда.

    В Государственном Историческом музее в Москве сохранился принадлежавший Ломоносову «перегонный куб» — большой медный сосуд цилиндрической формы, емкостью в одну треть ведра, с навинчивающейся медной крышкой, в которую впаяна под углом медная трубка. Ломоносов раздобыл и приспособил для своих целей обыкновенную «четвертину» и, по-видимому, сам выбил на ней старинный народный орнамент. По всему сосуду широким поясом вились два ряда крупных листьев и стеблей, а в середине виден был круг с надписью в четыре строки:

    «M. В.

    ЛОМОНОСОВ

    ACADEMIA

    ST. PITER-BURCH».

    На дне куба выставлена дата основания лаборатории — 1748 год.

    Ломоносов располагал в своей лаборатории девятью типами печей, что позволяло ему производить самые различные исследования и работы. У него были печи: плавильная, перегонная, стекловаренная, финифтяная, пробирная, обжигательная, «атанор»[41] с баней, или, по- русски, «ленивец», и др.

    Печи были размещены на невысоком помосте, между четырьмя столбами, поддерживавшими свод. Кругом был оставлен свободный проход, чтобы можно было удобно наблюдать за огнем. На столбах, с наружной стороны, были укреплены небольшие подсвечники с сальными свечами, скудно освещавшими помещение. У помоста стояли круглые большие плетеные корзины с древесным углем. На табурете лежали сделанные из дерева и кожи мехи для раздувания огня.

    По стенам на некрашеных широких полках стояли десятки больших и малых реторт, колб, реципиентов, склянок белого и зеленого стекла, выпаривательные чашки, воронки, ступки, банки с разнообразными химическими веществами и реактивами — от самых простых до самых сложных, общее число которых достигало пятисот названий.

    В своей лаборатории Ломоносов вел большую исследовательскую и научно-техническую работу, выполняя поручения различных ведомств. Он производил анализы минералов и образцов руд, присылаемых со всех концов России.

    Около 1750 года Ломоносов занимается составлением рецептуры фарфоровых масс и закладывает основы научного понимания процесса приготовления фарфора. Он впервые в науке высказывает правильную мысль О значении в структуре фарфора стеклообразного вещества, которое, как он выразился в «Письме о пользе Стекла», «вход жидких тел от скважин отвращает».

    Среди академических студентов вызвались охотники работать у Ломоносова и слушать его лекции. 15 февраля 1750 года студенты Михаил Софронов, Иван Федоровский и Василий Клементьев просили Академическую канцелярию: «понеже химия есть полезная в государстве наука», разрешить им «ходить оной науки к профессору его благородию г. Ломоносову, который показывать нам эксперименты и лекции свои начать собирается».

    Ломоносов поощрял русскую техническую мысль в ее стремлении избавиться от иноземной зависимости. В августе 1750 года к нему была прислана для свидетельства синяя брусковая краска, составленная Антоном Тавлеевым «со товарищами». Ломоносов уведомил канцелярию, что, «учинив многие сравнительные опыты с иностранною, которую здесь в России в великом числе употребляют», он нашел, что краска, составленная Антонам Тавлеевым, «всеми качествами с иностранною брусковою синею краскою сходна, и добротою своею оной ни в чем не уступаете.

    Ломоносов помышляет о развитии в России химической промышленности. 19 января 1750 года он пишет к Разумовскому, что, заботясь о «действительной пользе обществу» и приращении художеств, он рассудил за благо «изыскивать такие вещи, которые художникам нужны, а выписывают их из других краев и для того покупают дорогою ценою». Ломоносов открывает способ приготовления «лазури берлинской» двух сортов. Художники, работавшие при Академии наук, сообщали, что из присланных Ломоносовым образцов — первая краска «не хороша и не скоро высыхает», вторая же, напротив, «хороша и в дело годится». 15 мая 1750 года Ломоносов выступил с предложением организовать производство этой краски в более широком масштабе.

    А чтобы «делание оной лазури непродолжительно происходило и лаборатория бы могла иметь впредь лабораторов, природных россиян, то должно быть неотменно двум, трем лабораторским ученикам русским», то есть прямо указывал на необходимость воспитания отечественных специалистов. Но недальновидные правительственные круги не сумели оценить предложение Ломоносова, мечтавшего о непосредственной связи научной лаборатории с производством и о развитии в России новых отраслей промышленности[42].

    2. ЗАКОН ЛОМОНОСОВА

    Ломоносов был одним из замечательных новаторов в истории химии. Ломоносов по-новому осознал роль и значение химии, ее место среди наук, изучающих природу. Он называл химию наукой, в то время как многие химики еще определяли ее, как «искусство разложения тел смешанных на их составные части, или искусство соединения составных частей в тела», как писал в своих «Основаниях химии» Георг Шталь (1723) и другие до самого конца XVIII века. А для Ломоносова химия — «наука изменений»— учение о процессах, происходящих в телах.

    Морозов А.: Ломоносов Часть третья. IX. Естествоиспытатель

    «Слово о пользе Химии» М. В. Ломоносова (1751 г.).

    Ломоносов не только предложил новое понимание химии, он смело выводил ее на новую дорогу. В 1840 году знаменитый химик Юстус Либих говорил, что он отчетливо помнит, как во времена его молодости химия была только «служанкой лекарей, для которых она приготовляла рвотные и проносные снадобья; затиснутая в стенах медицинских факультетов, она никак не могла достичь самостоятельности. Только по нужде занимались ею медики; кроме как для них да еще и фармацевтов, она и не существовала».

    В «Слове о пользе Химии» (1751) Ломоносов с необычайной проницательностью говорил о причинах беспомощного состояния современной ему химии.

    «Химик, — указывал Ломоносов, — видя при всяком опыте разные и часто нечаянные явления и произведения, и приманиваясь тем к снисканию скорой пользы, Математику как бы только в некоторых тщетных размышлениях о точках и линиях упражняющемуся смеется. Математик напротив того уверен в своих положениях ясными доказательствами, и чрез неоспоримые и беспрерывные следствия выводя неизвестные количества свойств, Химика как бы одною только практикою отягощенного и между многими беспорядочными опытами заблуждающаго презирает; и приобыкнув к чистой бумаге и к светлым Геометрическим инструментам, Химическим дымом и пепелом гнушатеся».

    «Бесполезны тому очи, — восклицал Ломоносов, — кто желает видеть внутренность вещи, лишаясь рук к отверстию оной. Бесполезны тому руки, кто к рассмотрению открытых вещей очей не имеет. Химия руками, Математика очами Физическими по справедливости назваться может». Разобщение наук, изучающих природу, приводило к тому, что эти, по словам Ломоносова, неразрывно связанные между собою «сестры» до сих пор «толь разномысленных сынов по большей части рождали», то есть приходили к противоречивым и недостоверным выводам.

    Химия, чтобы стать настоящей наукой, должна, по образному выражению Ломоносова, «выспрашивать у осторожной и догадливой Геометрии», когда она «разделенные и рассеянные частицы из растворов в твердые части соединяет и показывает разные в них фигуры». Она должна «советовать с точною и замысловатою Механикою», когда «твердые тела на жидкие, жидкие на твердые переменяет, и разных родов материи разделяет и соединяет». Она должна «выведывать чрез проницательную Оптику», когда «чрез слитие жидких материй разные цветы производит». Только тогда, когда «неусыпный Натуры рачитель» — то есть исследователь природы — научится в химии «чрез Геометрию вымеривать, через Механику развешивать, и через Оптику высматривать», тогда он и «желаемых тайностей достигнет».

    Химикам, работавшим наугад, ремесленникам, пробирерам и аптекарским подмастерьям он противопоставляет научно подготовленного химика, который опирался бы на всю совокупность физико- математических наук. Ломоносов возвещает приход нового химика. Это «химик и глубокий математик в одном человеке». Однако и от химика и от математика Ломоносов требует новых качеств. «Химик требуется не такой, который только из одного чтения книг понял сию науку, но который собственным искусством в ней прилежно упражнялся». Химик, который ничего не видит за своими ретортами, который нагромождает беспорядочные опыты, следуя только своей узкой цели и не замечая «случившейся в трудах своих явления и перемены, служащие к истолкованию естественных тайн», не способен вывести свою науку на настоящую дорогу. Но и математик требуется не такой, «который только в трудных выкладках искусен, но который в изобретениях и доказательствах, привыкнув к математической строгости, в Натуре сокровенную правду точным и непоползновенным порядком вывесть умеет».

    Только немногие ученые в первой половине XVIII века осознавали принципиальную важность неуклонной проверки своих опытов мерой и весом. Ученик Ломоносова, талантливый русский химик Василий Клементьев (1731–1759), прямо говорил о несовершенстве тогдашней химической науки: «Я думаю, нет такого ученого, который бы не знал, какое почти бесконечное множество имеется химических опытов, но при всем том он не сможет отрицать, что авторы почти всех их прошли молчанием такие весьма важные и крайне нужные указания, как мера и вес». Клементьев справедливо указывал, что «в отсутствии меры и веса мы не можем наверняка, не опасаясь неудачи, обещать желательное нам явление, хотя оно и было уже ранее достигнуто другими. Это обстоятельство вполне поясняет, почему из химических опытов, уже опубликованных, многие редко или даже никогда не удаются другим производящим их впоследствии».

    Лаборатория Ломоносова располагала целым набором различных весов. Здесь были большие «пробные весы в стеклянном футляре», пробирные весы серебряные, несколько ручных аптекарских весов с медными чашками, обычные торговые весы для больших тяжестей, однако отличавшиеся большой точностью.

    Выполненная в 1754 году под руководством Ломоносова диссертация Василия Клементьева носила характерное название: «Об увеличении веса, которое некоторые металлы приобретают при осаждении» и была целиком построена на точных измерениях.

    Новый подход к задачам химии, пристальное внимание к весовым отношениям привели Ломоносова к замечательным опытам над окислением металлов.

    Долгое время люди не понимали природы огня и процессов горения, и представления их на этот счет носили самый фантастический характер. Огонь считали особым первичным элементом природы. Не только изобретатель камеры-обскуры и автор «Натуральной магии» знаменитый в свое время физик-любитель неаполитанец Джамбатиста Порта (1538–1615) утверждал, что лампа может в течение столетий гореть в герметически закрытом помещении (пещерах и гробницах), но этого же мнения придерживался и Декарт, полагавший, что «тело пламени» состоит из «мельчайших частиц, очень быстро и стремительно движущихся одна от другой». Декарт не видел в явлениях горения процесса соединения веществ и потому не считал необходимым их приток. Даже после того, как Отто Герике (1602–1686) при опытах с воздушным насосом установил, что свеча гаснет в пустоте и для горения нужен воздух, дело не двинулось вперед.

    С начала XVIII века в науке почти безраздельно господствовала теория флогистона, таинственной невесомой материи, вызывающей своим появлением все процессы горения, то внезапно охватывающей вещество и бурно соединяющейся с ним, то улетучивающейся в пространство.

    Сторонники этой теории полагали, что флогистон может принимать форму огня лишь в известной материальной среде, а потому объявили воздух универсальным растворителем невесомого флогистона, постоянно в нем присутствующего. Поэтому горение без воздуха и затруднительно. По воззрениям сторонников флогистона, металлы представляли собой сложное тело, состоящее из «окалины» и присоединившегося к ним флогистона, а «окалина» (соединение металла с кислородом) оказывалась простым телом.

    — процессов горения и обжигания металлов. В своем исследовании «Физические размышления о причинах теплоты и холода», напечатанном в первом томе «Новых комментариев» Петербургской Академии наук в 1750 году, но составленном Ломоносовым значительно раньше, он рассматривает вопрос и о том, что происходит при обжигании металлов.

    «Если не ошибаюсь, — писал Ломоносов, — весьма известный Роберт Бойль первый доказал на опыте, что тела увеличиваются в весе при обжигании… Если это действительно может быть доказано для элементарного огня, то мнение о теплотворной материи нашло бы себе в подтверждение твердый оплот».

    — «окалину». Бойль взламывал реторту, причем не преминул заметить, что воздух со свистом врывается в нее. После того Бойль взвешивал сосуд и устанавливал увеличение веса! Отсюда он делал вывод, что при прокаливании металла особо тонкая, но все же обладающая весом огненная материя проникла через стенки сосуда и, присоединившись к металлу, утяжелила его. Применив к химическому исследованию весы, Бойль встретился с новым явлением, но дал ему неверное толкование, удовольствовавшись представлением об «огненной материи».

    Размышляя над описанными Бойлем фактами, Ломоносов приходит к выводу, что эти опыты «показывают лишь, что либо части пламени, сжигающего тела, либо части воздуха, во время обжигания, проходящего над прокаливаемым телом, обладают весом». В письме к Л. Эйлеру, написанном в 1748 году, Ломоносов утверждал: «Нет никакого сомнения, что частички воздуха, непрерывно текущего над обжигаемым телом, соединяются с ним и увеличивают вес его»[43]. Ломоносов, несомненно, считал вопрос решенным, но он не забывал о нем и в 1756 году повторил опыты Роберта Бойля с соблюдением тех же самых условий. Но Ломоносов взвесил запаянный сосуд с образовавшейся окалиной до того, как он был вскрыт и в него впущен воздух. Увеличения веса не последовало!

    В своем отчете Ломоносов писал:

    «Делал опыт в заплавленных накрепко стеклянных сосудах, чтобы исследовать, прибывает ли вес металлов от чистого жару. Оными опытами нашлось, что славного Роберта Бойля мнение ложно, ибо без пропущения внешнего воздуха вес сожженного металла остается в одной мере».

    Этот опыт являлся подтверждением и одновременно следствием того закона сохранения вещества при химических превращениях, которым Ломоносов неизменно руководствовался в своей экспериментальной работе. Еще в письме к Леонарду Эйлеру от 5 июля, 1748 года Ломоносов отчетливо во всеобъемлющей форме высказал великий и основной закон природы:

    «Все перемены в натуре случающиеся такого суть состояния, что сколько чего от одного тела отнимается, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте… Сей всеобщий естественной закон простирается и в самые правила движения: ибо тело, движущее своей силой другое, столько же оныя у себя теряет, сколько сообщает другому, которое от него движение получает».

    В этих словах Ломоносова заключено гениальное обобщение великих философских принципов материализма — неуничтожимости материи и неуничтожимости движения, примененных им во всей своей широте к новому естествознанию. О том, что материя и связанное с нею движение не исчезают и не рождаются из ничего, говорили еще великие материалисты древности — Демокрит и Эпикур. Излагая их учение, древнеримский поэт Лукреций Кар (I век до нашей эры) в своей поэме «О природе вещей» писал, что «из ничего не творится ничто», а значит, «гибели полной вещей никогда не допустит природа».

    Тело вещей до тех пор нерушимо, пока не столкнется
    С силой, которая их сочетанье способна разрушить.
    Так что, мы видим, отнюдь не в ничто превращаются вещи,

    …Словом, не гибнет ничто, как будто совсем погибая,
    Так как природа всегда возрождает одно из другого
    И ничему не дает без смерти другого родиться[44].

    Материалистическая философия никогда не забывала об этих великих принципах, оказывавших свое действие на развитие науки. О неуничтожимости движения писал Декарт.

    экспериментальной работы.

    Одним из конкретных проявлений всеобщего закона Ломоносова был и экспериментально подтвержденный им закон сохранения вещества при химических превращениях, установление которого долгое время приписывалось французскому химику Антуану Лорану Лавуазье (1743–1794).

    Неоспоримы заслуги Лавуазье в установлении научных основ современной химии, в частности в деле внедрения принципа сохранения вещества в практику работы химиков. Но следует отметить, что в 1789 году, в курсе «Начальный учебник химии» Лавуазье те же вопросы ставил значительно уже.

    При описании процесса брожения виноградного сахара Лавуазье, отметив, что вес взятого сахара равен весу образовавшегося спирта и углекислоты, писал, что это происходит «потому, что ничто не творится ни в искусственных процессах, ни в природных, и можно выставить положение, что во всякой операции имеется одинаковое количество материи до и после операции, что качество и количество начал осталось теми же самыми, произошли лишь перемещения, перегруппировки. На этом положении основано все искусство делать опыты в химии: необходимо предполагать во всех настоящее равенство между началом исследуемого тела и получаемого из него анализом»[45].

    Декартом. Заслуга Ломоносова заключалась в том, что он связал воедино принцип сохранения вещества и принцип сохранения движения и систематически применял его при изучении природы.

    3. ФИЗИЧЕСКАЯ ХИМИЯ

    «Моя химия — физическая».

    М. В. Ломоносов

    29 декабря 1753 года Леонард Эйлер писал Шумахеру о Ломоносове: «Ныне таковые умы весьма редки, ибо большая часть остаются при одних опытах и нисколько не хотят о них рассуждать, другие же, напротив, пускаются в такие нелепые рассуждения, которые противны всем основаниям здравого естествознания».

    проблем. Естествознание в XVIII веке все более и более уходило в частности, стремилось изучить мир в деталях, но мало заботилось об их взаимной связи. Неполнота и недостаточность реальных сведений и наблюдений, слабость экспериментального исследования природы порождали множество бесплодных и фантастических гипотез, тем более непродуктивных, что они уже не опирались на целостную философскую систему. Представители опытных наук, устав от мудрствований и умозрительных теорий, лопающихся, как мыльные пузыри, при соприкосновении со вновь открываемыми фактами, начинали вообще сторониться «философствования» и даже гордились тем, что они избегают «гипотез». Но, как заметил впоследствии Ф. Энгельс, говоря о естествознании XIX века, «философия мстит за себя задним числом естествознанию за то, что последнее покинуло ее»[46], и поэтому те, кто подчас кичился своим превосходством над философами и якобы оставался при одних опытах, на самом деле влачил за собой в науку «остатки давно умерших философских систем»[47] . Стремление остаться в рамках только опытной науки вполне уживалось с общим метафизическим характером естествознания XVIII века, в котором наряду со все увеличивающимся запасом реальных знаний процветали метафизические представления о мире и отдельных силах природы.

    Ломоносов ценил опытное знание. Причину огромных успехов естествознания он видел прежде всего в том, что «ныне ученые люди, а особливо испытатели натуральных вещей, мало взирают на родившиеся в одной голове вымыслы и пустые речи, но более утверждаются на достоверном искусстве», то есть на точном эксперименте. «Главнейшая часть натуральной науки — физика, — продолжает он, — ныне уже только на одном оном свое основание имеет. Мысленные рассуждения произведены бывают из надежных и много раз повторенных опытов»[48]. «Один опыт я ставлю выше, чем тысячу мнений, рожденных только воображением», — указывает он в черновых заметках по физике, относящихся к 1741–1743 годам.

    Ломоносов сознавал необходимость гипотез для развития науки. «Они позволительны в предметах философских, и это даже единственный путь, которым величайшие люди успели открыть истины самые важные. Это как бы порывы, доставляющие им возможность достигнуть знаний, до которых умы низкие и пресмыкающиеся в пыли никогда добраться не могут».

    В этом отношении Ломоносов, в отличие от современных ему близоруких эмпириков, отрицавших значение гипотезы, был представителем мыслящего и развивающегося естествознания, ибо, как заметил Энгельс, «формой развития естествознания, поскольку оно мыслит, является гипотеза»[49].

    Истинное познание было возможно для Ломоносова только на основе единства теории и опыта. «Из наблюдений устанавливать теорию, через теорию исправлять наблюдения есть лутчей всех способ к изысканию правды», — говорит он в своем «Рассуждении о большей точности морского пути» (1759).

    думают, но был прекрасным и тонким экспериментатором: находчивым, последовательным, исключительно точным в своих наблюдениях и крайне осторожным в выводах.

    Только необыкновенная глубина и ясность теоретического мышления Ломоносова, отчетливое представление о целях, задачах и методах научной химии, страсть к экспериментальным исследованиям сделали Ломоносова отцом и основателем физической химии — этой совершенно новой для его времени науки.

    Физическая химия для Ломоносова — это «наука, объясняющая на основании положений и опытов физики то, что происходило в смешанных телах при помощи химических операций». Ломоносов шел к химии от физики. Уже в своей диссертации «О рождении и природе селитры» (1749) он уверенно говорит: «Мы считаем возможным научно и вполне связно изложить почти всю химию, обосновав ее на собственных ее положениях, принятых недавно в физике; мы не сомневаемся, что можно легче распознать скрытую природу тел, если мы соединим физические истины с химическими». А за несколько месяцев до смерти, в проекте Академического регламента, составленном в сентябре 1764 года, Ломоносов писал: «Химик без знания физики подобен человеку, который всего должен искать ощупом. И сии две науки так соединены между собою, что одна без другой в совершенстве быть не могут».

    Ломоносов не только говорил о родстве или содружестве физики или химии. Они составляют для него неразрывное целое. Изучение физических свойств тел раскрывает природу вещества, а изучение состава вещества и происходящих в нем химических процессов раскрывает причину физических его свойств. Следуя этому, Ломоносов стремился поставить на службу химии все доступные и известные в его время приборы и методы физического исследования.

    Во времена Ломоносова микроскоп применялся главным образом в биологии, где с его помощью были произведены значительные открытия. Во всех остальных областях производились лишь бессистемные наблюдения над всевозможными предметами, которые только удавалось поместить под микроскоп, нередко без всякого разбора. Песчинки, мушиные крылья, мельчайшие насекомые и инфузории, кристаллы, мыльная пена, обрезки бумаги и различных тканей изучались под микроскопом, описывались и зарисовывались, наполняя обширные «микрографии», издававшиеся во многих странах Западной Европы.

    В его программе лекций по физической химии предусматриваются микроскопические исследования растворов, кристаллов, аморфных порошкообразных масс, получающихся при прокаливании солей, изучение окалин и т. д.

    Он наблюдал под микроскопом еще в 1744 году подлинную химическую реакцию взаимодействия железной проволоки с азотной кислотой. Ломоносов выдвигал проблему систематического применения микроскопа как особого нового метода физико-химического исследования. Потребности этого исследования подсказали ему новые особенности в конструкции самого микроскопа, чтобы иметь возможность быстрого перехода от одного увеличения к другому, не прерывая наблюдения.

    Сконструировав еще в 1741 году «катоптрико-диоптрический зажигательный инструмент» (представлявший собою остроумную комбинацию плоских зеркал и двояковыпуклых линз), Ломоносов нашел ему применение и в своей химической лаборатории, используя солнечные лучи для получения весьма высоких температур. Ломоносов пользовался «зажигательным инструментом» для плавления кристаллов.

    Разрабатывая проблемы физической химии, Ломоносов изучал влияние на вещество низких температур и давления, производил опыты в пустоте, изучал явления вязкости, капиллярности, кристаллизации, форму и удельный вес кристаллов, образование растворов и растворимость в разных условиях, сопровождающие тепловые явления, преломление света и действие электричества в растворах — словом, — все то, что составило главное содержание этой науки лишь через полтора века. Он ставит опыты последовательными сериями и сводит результаты многочисленных измерений в особые таблицы. В своем отчете о трудах в 1753 году Ломоносов писал: «делал новые физико-химические опыты, дабы привести химию сколько можно к философскому познанию и сделать частью основательной физики: из оных многочисленных опытов, где мера, вес и пропорция показаны, сочинены многие цифирные таблицы на 24 полулистовых страницах, где каждая строка опыт содержит».

    «Росписи» своих важнейших трудов он указывал: «Делал химические опыты по дестиллации и сублимации без воздуха и приметил неизвестные еще в ученом свете перемены; еще не изданы».

    Ломоносов не упустил из виду и такую область новейшей физической химии, как изучение коллоидов. «Застудневание растворов, сцепление студней, цвет, запах», — записывает он.

    Особенное внимание Ломоносов уделял изучению растворов — этой важнейшей области современной физической химии.

    «Ломоносов, — писал в 1919 году известный русский химик Л. А. Чугаев, — из далекого прошлого каким-то изумительным чутьем проводил не только возникновение этого важного отдела химии, но даже те слабые и теневые стороны, которые могли обнаружиться при неправильном и одностороннем развитии этой новой научной дисциплины»[50].

    Однако дело было не столько в изумительном «чутье» Ломоносова, сколько в том, что он приложил к химии всю совокупность своих физических представлений, основанных на материалистическом понимании природы, что и позволило ему уйти на целое столетие вперед от своих современников. В своем «Введении в истинную физическую химию» Ломоносов указывает на недостаточность средств и прочность методов современной ему химии, которая скользила по поверхности явлений: «Большая часть Химиков обыкновенно считает, что после ознакомления со смешанными телами при помощи химических операций они вполне познали составные части тел, поскольку это дается этим способом, и не ищут других путей во внутренности их». А для того чтобы проникнуть во внутренность тел, узнать строение вещества, нужно знание «первоначальных частиц», то есть атомов. «Видя у часов одну только поверхность, можно ли знать, какою они силою движутся и каким образом, разделяя на равные и на разные части, показывают время. Во тьме должны обращаться физики, а особливо химики, не зная внутреннего нечувствительных частиц строения», — писал Ломоносов в «Рассуждении о твердости и жидкости тел» (1760).

    Его особенно привлекают вопросы атомно-молекулярной физики, от решения которых, по его глубочайшему убеждению, зависели все дальнейшие успехи естествознания. «Множество физических явлений до сих пор осталось недостаточно объясненным — и особливо в той части естественных наук, которая изучает качества тел, происходящие от самых незначительных частичек, вполне недоступных всякому чувству зрения», — пишет он в своей диссертации «Об отношении количества материи и веса» (1758).

    Ломоносов мыслил как философ-материалист и умел поэтому находить верные принципы понимания этих глубоких и недоступных еще непосредственному исследованию явлений.

    Ломоносов не только разрабатывает теоретические положения физической химии и ведет экспериментальную работу в этой области, но в 1752–1754 годах читает первый в мире курс этой науки.

    Ломоносов долго и тщательно готовится к занятиям, указывая, что он решил поместить в своем курсе «только то, что приводит к научному объяснению смешения тел», а потому исключает из изложения все, что относится «к наукам экономическим, фармации, металлургии, стекольному делу и т. д.», что должно составить особый курс технической химии. «В химических моих лекциях, которые я должен читать учащемуся юношеству, — писал Ломоносов 11 мая 1752 года, — я считаю очень полезным присоединить, где возможно, к химическим опытам физические». При прохождении этого курса «опытной химии», по мнению Ломоносова, надо будет:

    «1. Определить удельный вес химических тел.

    2. Исследовать сцепление между частичками их:

    а) посредством ломания тел, б) сдавливанием, в) стачиванием на бруске, г) счетом капель жидкости.

    3. Описывать фигуры кристаллических тел.

    4. Подвергать тела действию Папиновой машины.

    6. Исследовать тела, особенно металлы, долгим стиранием.

    Одним словом, испытывать все, что только можно измерить, взвешивать и определять вычислением».

    Ломоносов стремится обеспечить свою лабораторию приборами, необходимыми для физико- химических исследований. Он обзаводится насосом, изобретает прибор для определения вязкости жидкости, придумывает точило для определения твердости тел, совершенствует конструкцию Папиновой машины для получения высоких давлений. Машина была изготовлена по чертежам Ломоносова на Сестрорецком заводе.

    Для измерений температуры Ломоносов в 1752 году сконструировал термометр, наиболее рациональный из всех существовавших. Он принял для градуирования две основные точки — температуру плавления льда, которую он обозначил через 0°, и температуру кипения воды, обозначенную им через 150°, тогда как большинство других термометров вело отсчет от одной какой-либо точки и притом принимало температуру кипения воды за 0°, производя отсчет вниз (в термометре Делиля плавление льда обозначалось как 150°). Термометр Ломоносова облегчал точные измерения и связанные с ними расчеты. Он устранял путаницу при отсчете градусов при повышении температуры выше точки кипения воды.

    ***

    время немецкого химика Кастнера, которые были так «беспорядочны и нелогичны», что «вполне походили на лавку старьевщика, набитую всяческой ученостью». Ломоносов последовательно и систематически излагал свой курс и требовал, чтобы студенты не только слушали, но и своими руками производили все операции и постепенно втягивались в самостоятельную работу. 15 апреля 1754 года он сообщал Академической конференции, что для постановки опытов с соляными растворами требуется очень много времени, поэтому он «употребил для этих трудов студентов, ходивших к нему на лекции».

    Эта плодотворная деятельность Ломоносова скоро оборвалась. В 1753 году Петербургская Академия наук предложила на конкурс задачу — объяснить причины отделения золота от серебра посредством крепкой водки и притом показать способ, как бы легче и дешевле разделить эти металлы. Конкурс был повторен и в 1754 году, так как присланные диссертации не были признаны удовлетворительными. Присудили ее не тому, за кого стоял Ломоносов (Карлу Дахрицу), а некоему Ульриху Зальхову.

    Это, в сущности, незначительное происшествие имело для Ломоносова весьма серьезное последствие, о котором он сам рассказывает в своей «Истории Академической канцелярии»: «При случае платы в награждении по задаче ста червонцев за химическую диссертацию, Ломоносов сказал в собрании профессорском, что де он, имея работу сочинения Российской истории, не чает так свободно упражняться в химии, и ежели в таком случае химик понадобится, то он рекомендует ландмедика Дахрица. Сие подхватя, Миллер записал в протокол и, согласясь с Шумахером, без дальнейшего изъяснения с Ломоносовым, скоропостижно выписали доктора Зальхова, а не того, что рекомендовал Ломоносов, который внезапно увидел, что новый химик приехал и ему отдана лаборатория и квартира».

    Так нечаянно-негаданно Ломоносов лишился созданной им химической лаборатории. Его поймали на слове.

    «потому что у него здесь мало надежды на получение места по своей науке химии и живет он без службы». «У него только жена, и его можно было бы приобрести на недорогих условиях». Весной 1756 года Зальхов уже был в Петербурге. Этот немецкий химик, получивший в свое ведение химическую лабораторию Ломоносова, оказался полнейшим ничтожеством и быстро привел «свою науку» к полнейшему запустению.

    Ломоносов продолжает занятия химией у себя дома и «на своем коште». Но Ломоносов не перестал разрабатывать важнейшие вопросы естествознания и размышлять об основных законах, управляющих природой.

    4. НЕВЕСОМЫЕ МАТЕРИИ

    Одной из характернейших черт естествознания XVIII века было пользовавшееся всеобщим распространением убеждение о существовании в природе множества таинственных и непостижимых материй, или «флюидов», которых было нельзя ни взвесить, ни уловить, ни удержать в какой-либо оболочке. Их называли «невесомыми» и «неукротимыми». Они приходили и уходили неведомыми путями, распространялись и «перетекали» от предмета к предмету. От их простого присутствия зависело появление теплоты, света, электричества, магнетизма. Ученые яростно спорили, совпадает ли «световая материя» с «огненной», а «материя тепла» с флогистоном, присутствующим при химических процессах.

    Физики и химики XVIII века представляли себе материю в отрыве от движения. Явления, вызванные движением собственных частиц самой материи, объяснялись существованием таких особых невесомых материй, или «субстанций», которые, по выражению Ломоносова, «скитались без малейшей вероятной причины».

    «заново переработанном виде» известный «Физический словарь» Гелера содержал особую статью о невесомых, содержащую глубокомысленные рассуждения о том, что, по всей вероятности, вряд ли можно рассчитывать на то, что когда-либо будет найдена такая оболочка, в которой они могли бы находиться долгое время.

    «Положительные науки, — писал А. И. Герцен в своих «Письмах об изучении природы», — имеют свои маленькие привиденьица: это — силы, отвлеченные от действий, свойства, принятые за самый предмет, и вообще разные кумиры, сотворенные из всякого понятия, которое еще не понятно»[51]. Прекрасным примером чего и являются, по его словам, невесомые, которых никто не видел и не получил «вне тел». Герцен указывал на тлетворное влияние самого метода познания, оперирующего подобными метафизическими представлениями. «Эта метода делает страшный вред учащимся, давая им слова вместо понятий, убивая в них вопрос ложным удовлетворением. «Что есть электричество?» — Невесомая жидкость. Не правда ли, что лучше было бы если б ученик отвечал: — не знаю?..»[52].

    Ломоносов познакомился с теорией теплорода еще за границей. Христиан Вольф разделял эту теорию и пропагандировал ее в своих книгах. Но она не отвечала материалистическим устремлениям молодого Ломоносова, которому претила всякая метафизика. И вскоре же после своего возвращения из-за границы Ломоносов приступает к разработке своей теории теплоты, которая решительным образом расходилась с господствующими в его время представлениями.

    В диссертации «О нечувствительных физических частичках» он выдвинул положение, что теплота состоит «во внутреннем движении собственной материи», причем разные степени теплоты определяются скоростью ее движения. И далее: «как никакому движению нельзя приписать высшую степень скорости, так нет и высшей степени теплоты. Величайший холод в теле — абсолютный покой; если есть хоть где-либо малейшее движение, то имеется и теплота». Ломоносов таким образом сформулировал положение об абсолютном нуле температуры.

    Свои положения Ломоносов развил в стройную теорию в «Рассуждении о причине теплоты и холода», представленном им в 1744 году и напечатанном на латинском языке в первом томе «Новых Комментариев» Петербургской Академии наук в 1750 году. «В наше время, — говорит он, — причина теплоты приписывается особой материи, называемой большинством теплотворной, другими эфирной, а некоторыми элементарным огнем… И хорошо, если бы еще учили, что теплота тела увеличивается с усилением движения этой материи, когда-то вошедшей в нее, но считают истинной причиною увеличения или уменьшения теплоты простой приход или уход разных количеств ее. Это мнение в умах многих пустило такие могучие побеги и настолько укоренилось, что можно прочитать в физических сочинениях о внедрении в поры тел названной выше теплотворной материи, как бы притягиваемой каким-то любовным напитком, и наоборот, — о бурном выходе ее из пор, как бы объятой ужасом». Ломоносов убедительно доказывал, что нет никакой нужды привлекать для объяснения тепловых явлений таинственный «теплотвор» или «теплород». «Имеется достаточное основание теплоты в движении». То, что это движение не воспринимается зрением, не имеет значения. Оно ускользает от зрения, так как частицы движущейся материи слишком малы: «Кто в самом деле будет отрицать, что когда через лес проносится сильный ветер, — то листья и сучки дерев колышутся, хотя бы при рассматривании издали глаз не видел движения». Но метафизические представления о теплороде прочно засели в умах западноевропейских ученых, став тормозом для развития правильного понимания тепловых процессов в природе и технике[53].

    Сокрушительная критика теплорода, данная Ломоносовым, не прошла бесследно для науки. Она, несомненно, содействовала падению авторитета флогистона, этого близкого родственника теплорода, а многими даже отождествлявшегося с ним.

    Опираясь на свою атомно-молекулярную теорию, Ломоносов прокладывал новые пути в физике и химии. В доложенной им еще в феврале 1749 года диссертации «Попытка теории упругой силы воздуха» Ломоносов связывает свои атомистические представления с разрабатываемой им теорией теплоты как движения частиц. Упругой силой воздуха Ломоносов называет стремление воздуха распространяться во все стороны. Он полагает, что это свойство проявляют не единичные частички, а их совокупность. Ломоносов развивает гениальную теорию о мгновенном и непосредственном взаимодействии частиц воздуха, обусловленном теплотою. Ломоносов убежден, что одно тело не может действовать на другое без соприкосновения. Но в то же время несомненно, что атомы воздуха находятся далеко один от другого, так как воздух может быть значительно сжат в своем объеме под давлением. Это противоречие может быть устранено только допущением, что не все атомы находятся одновременно в одном и том же состоянии. «Очевидно, — пишет Ломоносов, — что отдельные атомы воздуха, взаимно приблизившись, сталкиваются с ближайшими в нечувствительные моменты времени, и когда они находятся в соприкосновении, вторые атомы друг от друга отпрыгнули, ударились в более близкие к ним и снова отскочили; таким образом непрерывно отталкиваемые друг от друга частыми взаимными толчками, они стремятся рассеяться во все стороны». Эта замечательная картина состояния частичек ; воздуха, обусловленного их тепловым состоянием, в основном совпадает с принятой лишь в середине XIX века «кинетической теорией» газов.

    Свое понимание теплоты Ломоносов стремился связать с экспериментальными наблюдениями. В заметках к исследованию «О твердом и жидком», составленных в начале 1760 года, он упоминает свои «опыты к произведению искусственного холода», сделанные им еще в 1747 году. Поэтому его живо заинтересовали наблюдения академика И. А. Брауна, которому в декабре 1759 года удалось заморозить ртуть. Ломоносов сразу оценил значение этого открытия, так как в науке еще держались старые представления об «особых свойствах» ртути, к числу которых относилась и абсолютная незамерзаемость.

    –41,30 по шкале нашего времени), Ломоносов погрузил ртутный термометр в «холодильную смесь» из снега, «крепкой водки» (азотной кислоты) и «купоросного масла» (серной кислоты). «Не сомневаясь, что она уже замерзла, — описывает этот опыт Ломоносов, — вскоре ударил я по шарику медным при том бывшим циркулом, отчего тотчас стеклянная скорлупа расшиблась и от ртутной пули отскочила, которая осталась с хвостиком бывшим в трубке термометра достальныя ртути, наподобие чистой серебряной проволоки… Ударив по ртутной пуле после того обухом, почувствовал я, что она имеет твердость, как свинец или олово».

    вопросов.

    Ломоносов подчеркивал заслуги Брауна в этом выдающемся открытии, так как желал защитить его от недобросовестных нападок и происков тех академиков, которым была поперек горла их давнишняя дружба. В 1764 году в составленной им «Истории Академической канцелярии» Ломоносов писал, вспоминая об этом: «А что на Брауна уже не первой раз они нападают за его несклонность к их коварствам, то свидетельствует их поступок, когда он ртуть заморозил: ибо Миллер писал в Лейпциг именем Академии без ее ведома, якобы начало его нового опыта произошло от профессора Цейгера и Епинуса; и Брауну, якобы по случаю, удалось как петуху сыскать жемчужное зерно».

    ***

    Создавая целостную физическую картину мира, Ломоносов не мог обойти вопроса о природе света, тем более, что оптика была его подлинной страстью. В своем «Слове о происхождении Света», произнесенном 1 июля 1756 года, Ломоносов поднимал острые и спорные вопросы физики. Он не сомневался в том, что свет представляет собою движение материи. Но на этот счет существовало два мнения: «Первое Картезиево, от Гугения подтвержденное и изъясненное; второе от Гассенда, начавшееся и Невтоновым согласием и истолкованием важность получившее. Разность обоих мнений состоит в разных движениях. В обоих поставляется тончайшая, жидкая, отнюдь неосязаемая материя. Но движение от Невтона полагается текущее и от светящихся тел, наподобие реки во все стороны разливающееся; от Картезия поставляется беспрестанно зыблющееся без течения».

    «О свете», написанном в 1678 году, представлял себе передачу света на расстоянии как ряд ударов в покоящиеся упругие частицы эфира, по которым и распространяется движение. По этим частицам может передаваться множество пересекающихся волн, не сливаясь и не уничтожая друг друга. Гюйгенс пояснил это наглядным примером: «Если одновременно ударить по ряду с двух противоположных концов равными шарами… то каждый из них отскочит с тою же скоростью (с какой он шел), а ряд весь останется на месте, хотя движение и прошло по всей длине его в том и другом направлении».

    Ломоносов был близок к такому пониманию эфира, предполагающему наличие во всемирном пространстве сплошной упругой среды. В набросках по теории электричества он высказывает мысль, что «частички, составляющие эфир, всегда все находятся в соприкосновении с соседними наиболее близкими». Эти частички «имеют шаровидную фигуру». Свет распространяется через огромное пространство в нечувствительный момент времени. «Колеблющееся движение, коим через эфир распространяется свет, не может иначе происходить, как если одна корпускула ударит в другую корпускулу; а ударить не может, если не прикоснется».

    Ломоносов защищал волновую теорию света. Но в его время как раз восторжествовала теория Ньютона. Ньютон считал, что всякое светящееся тело испускает мельчайшие частицы, или корпускулы, особой световой материи. При переходе в более плотную среду частицы должны были испытывать притяжение. При этом скорость их должна была увеличиться, а отсюда следовало, что скорость света в более плотной среде (например, в воде) должна быть больше, чем в менее плотной. Этим можно было объяснить законы преломления света; но чтобы объяснить отражение света, Ньютон должен был приписать материальной среде, принимающей свет, еще и отталкивающую силу. Ньютон считался со взглядами Гюйгенса. Он угадывал относительную справедливость и вместе с тем неполноту каждой из соперничавших теорий. Последователи Ньютона уже не сознавали внутренних противоречий отстаиваемой ими теорий истечения. Волновая теория света была отброшена и отрицалась большинством западноевропейских ученых. Ломоносова не ослепил авторитет Ньютона. В «Слове о происхождении Света» он приводит много доводов против теории истечения света и утверждает, что она не согласуется с законами механики и повседневным опытом.

    Ломоносов отвергал существование самостоятельной «светящейся материи», которая, как он был убежден, не может протекать от Солнца с неимоверной скоростью и в огромных количествах и затем неизвестно куда исчезать. Ведь не сам воздух «от звенящих гуслей» течет во все стороны, а звук передается, приходит к уху через его колебание. Точно так же «зыблющееся» движение эфира, наполняющего вселенную, служит для передачи и возбуждения явлений света. Самостоятельно разрабатывая важнейшие вопросы физики, Ломоносов опирался на отдельные теоретические положения естествоиспытателей прошлого, не считаясь с тем, признаны они или нет его западноевропейскими современниками. Выступая поборником «устаревшей» теории света, Ломоносов проявил необычайную смелость и независимость мысли. Его доводы произвели глубокое впечатление на Леонарда Эйлера, который почти дословно повторил их в своей популярной книге по физике, выпущенной Петербургской Академией на французском и русском языках под заглавием «Письма о разных физических и филозофических материях, писанные к некоторой немецкой принцессе» (1768). Но и его голос остался одиноким. Теория истечения господствовала еще много десятилетий[54].

    Основные физические принципы Ломоносова в общих чертах отвечали тому уровню, которого достигла наука только к середине XIX века, когда, наконец, получили развитие и признание закон сохранения материи и присущего ей движения, молекулярно-кинетическая теория теплоты, кинетическая теория газов и волновая теория света, являющиеся главнейшими достижениями ломоносовской физики.

    Естествоиспытатель XVIII века был окружен не только таинственными невесомыми материями. Со всех сторон на него надвигались еще более непостижимые силы, привлеченные для объяснения новых и непонятных фактов и явлений. Положительное и отрицательное электричество, притягательные и отталкивательные силы, наконец действующее на едва мыслимых расстояниях всемирное тяготение. Принципы, не скрывающие в себе ничего сверхъестественного, становились орудием опасной метафизики. Шло ожесточенное наступление на самые основы материализма. Феодальное мировоззрение защищалось не только насилием. Совершенно не случайно уже с XVII века вопросами естествознания занялись иезуиты. Из их среды вышли выдающиеся физики и астрономы. Иезуиты охотно экспериментировали, но первоначально избегали гипотез. Они даже ядовито упрекали своих противников, в особенности картезианцев, что те следуют «предвзятым» идеям вместо добросовестного «описания» природы. Иезуиты- физики стремились приспособить схоластику к новейшим открытиям естествознания, заставить их служить своим целям. Ограничение задач науки «наблюдением» и «описанием» было для них удобным средством для утверждения метафизики.

    К середине XVIII века, с ростом материалистических тенденций, в период назревания буржуазной французской революции еще более усилился натиск антиматериалистических учений. Физики-идеалисты, в том числе иезуиты, занялись теорией и обратили внимание на возможности, которые открывались для них в теории Ньютона., Атомизм Ньютона, допускающий действие на расстоянии, через «пустоту», давал отправную точку для дальнейшего обоснования динамизма. Материя исчезала вовсе. Оставались только силы.

    На прямо противоположных позициях стоял в это время Ломоносов.

    Ломоносов сдержанно относился к теории всемирного тяготения Ньютона, ибо не мог допустить действия на расстоянии, и в своем «Рассуждении о твердости и жидкости тел» (1760) утверждал, что «подлинная и бесподозрительная притягательная сила в натуре места не имеет». Еще резче он выразился в «Слове о происхождении Света», где говорит, что «притяжение» в его чистом виде не что иное, как «потаенное качество из старой Аристотелевой школы, к помешательству здравого учения возобновленное». Таким образом, в попытках идеалистического истолкования ньютонианства Ломоносов видел подновленную схоластику.

    «действии на расстоянии» и даже не объявлял притяжения реальностью. В своем «Рассуждении о твердости и жидкости тел» Ломоносов утверждает, что Ньютон «притягательной силы не принимал в жизни, по смерти учинился невольной ее предстатель излишним последователей своих радением».

    В своих публичных высказываниях Ньютон был осторожен. Он даже утверждал, что тяжесть должна вызываться каким-то агентом, действующим постоянно по определенным законам. Но он уклонялся от прямого ответа на вопрос, какого же свойства этот постоянно и неизменно действующий агент. Но для себя эти вопросы Ньютон решил. И притом несколько неожиданно для естествоиспытателя! Как обнаружилось из опубликованных в 1937 году дневников Д. Грегори, записывавшего свои беседы с Ньютоном, последний серьезным образом полагал, что пустое пространство между атомами заполнено… богом[55]. Бог, от присутствия которого «движущиеся тела не испытывают сопротивления» (в силу его нематериальности), и является скрытым регулятором всемирного тяготения. В этом проявили себя узость и ограниченность социального мировоззрения Исаака Ньютона.

    Ломоносов — представитель самого передового и прогрессивного естественнонаучного мировоззрения, какое только было возможно в XVIII веке, защищал последовательное материалистическое понимание природы от неожиданного мощного вторжения метафизики, пытавшейся опереться на данные опытной науки и теоретические построения Ньютона.

    Ломоносов угадывал исторический смысл деятельности Ньютона, ее положительное значение для «приращения наук». Но он отдавал себе отчет в том, какие философские выводы стремятся сделать из теории тяготения.

    Неприемлемость для Ломоносова теории чистого притяжения заставила его искать объяснения явлений тяжести другими путями. Тяжесть, полагал Ломоносов, должна происходить в результате толчков, импульсов, ударов, которые получают тела и которые влекут их к центру Земли. Поэтому должна существовать «тяготительная материя», которая, будучи связана с телами и передавая им эти удары, вызывает явление тяжести. Однако это отнюдь не значит, что Ломоносов делал уступку «особливым» невесомым материям, столь популярным в его время. Действие тяжести Ломоносов возлагает на эфир, который и выступает в роли «тяготительной материи». По представлениям Ломоносова, вес не является абсолютным свойством материи. Эфир не имеет веса, но он может явиться его причиной. Таким образом, понятие веса Ломоносов пытался вывести из движения. Различие в удельном весе происходит от состояния поверхности малых частиц. Все дело в сумме ударов, получаемых частицами через эфир, а чистого притяжения нет. Так рассуждал Ломоносов. Это была не только чрезвычайно остроумная, но и последовательная механико-материалистическая теория. «Без эфира, протягивающего механические нити между дискретными массами в пустом пространстве, нет возможности механического понимания явлений», — указывал академик С. И. Вавилов[56]. Эфир и явился для Ломоносова универсальным передатчиком движения. В эфире, как и в веществе, согласно Ломоносову, возможны три рода движения: «текущее» (поступательное), «коловратное» (вращательное) и «зыблющееся» (колебательное).

    с помощью эфира объединить и связать воедино все виды движения в природе.

    Ломоносовское познание мира шло по верному материалистическому руслу.

    Естествознание XVIII века дробило физическую картину мира, наводняя ее «особливыми» лжематериями и порознь действующими силами. Оно отрывало движение от материи и разобщало различные формы движения. Ломоносов же, напротив, исходил из отчетливого представления об единстве материи и материальных сил в мире.

    непроницаемый (дискретный) атом древних атомистов, перешедший в систему Ньютона. Но в отличие от ньютоновских частиц, летающих в пустом пространстве по законам механики и подчиненных таинственным силам тяготения, атомы Ломоносова, или, как он их называл, первоначальные «нечувствительные частицы», двигались и перемещались в более тонком эфире, воспринимая и передавая через него различные виды движения. При этом Ломоносов вводит новый принцип, или, как он говорит, основание, «которое во всей физике поныне неизвестно, и не токмо истолкования, но еще имени не имеет». Он называет это основание «совмещением частиц». Ломоносов предлагает назвать частицы, «сцепляющиеся согласно друг с другом», совместными, а несцепляющиеся и недвижущиеся согласно» — несовместимыми. Далее Ломоносов говорит: «Сила оного основания зависит от сходства или несходства поверхностей».

    Если бы дело шло только о том, чтобы представить себе частицу материи вроде шестерни или снабженной любыми другими механизмами для сцепления, то у Ломоносова не было бы причины заявить, что тут намечается какое-то новое основание»«которое во всей физике поныне неизвестно». Формы гипотетических корпускул конструировались и до Ломоносова. Вымышленные корпускулы щедро снабжались всевозможными крючочками и зубчиками. Что же касается Ломоносова, то он как раз воздерживался от попыток умозрительно определить форму этих частичек и снабдить их вымышленными механическими признаками. В полемической статье «О должности журналистов», напечатанной в 1755 году на французском языке, Ломоносов писал, что «на сегодняшний день здравомыслящее учение не претендует на знание точной формы частиц».

    «О действии химических растворителей» Ломоносов иронически отзывался о теориях растворов западноевропейских химиков и физиков, которые «придают временно растворителям клинья, крючечки и не знаю еще какие инструменты, или без всяких доказательств, или приводя маловероятные доводы». Дело для Ломоносова было не в измышлении таких внешне механических придатков, а в необходимости уяснить характер механического движения. Ломоносов в этом отношении пошел значительно дальше своего предшественника в области атомно-молекулярных представлений Гассенди (1592–1655) и его эпигонов корпускуляр философов XVIII века.

    Шаровидную форму частиц Ломоносов допускает лишь как простейшую, наиболее распространенную в природе, «как в самых великих предметах, так и в самых малых», начиная от «огромных и сложных тел вселенной» до маленьких шариков, плавающих в крови. Ломоносов указывал на необходимость механических соответствий для объяснения «сцепления» частиц. Задачу эту он также возлагает на эфир. «Эфир есть причина сцепления, так как, будучи в движении, уничтожает сцепление». Понятие «сцепления» было необходимо Ломоносову и для истолкования химических процессов.

    Многие химики не только во времена Ломоносова, но и значительно позднее, не задумываясь, переносили на взаимодействие атомов законы Ньютона о притяжении небесных светил. Для Ломоносова так называемое «химическое сродство» находило объяснение не в существовании особого вида притяжения между частицами, а в наличии соответствия или несоответствия поверхностей самих частиц.

    «Модель» мира, предлагавшаяся Ломоносовым, механистична и неверна с точки зрения современной науки. Из физики навсегда исчез «мировой эфир». Атомы, по современным представлениям, отнюдь не являются упругими «шаричками», как их описывал Ломоносов. Наука ушла далеко вперед. Однако не следует забывать, что поиски «гипотетического эфира» продолжались и в XX веке и что он послужил чрезвычайно полезной гипотезой для истолкования многих физических явлений, в особенности в области оптики. А представление об упругих неделимых, едва ли не шарообразных атомах держалось до открытия радиоактивности. Механико-материалистическая картина мира, начертанная Ломоносовым, явилась самой величественной и исторически наиболее ценной системой взглядов, позволившей Ломоносову вырваться из узких рамок своего времени и прийти к плодотворным и далеким предвидениям. При оценке прогрессивного значения естественнонаучных взглядов Ломоносова уместно вспомнить замечание В. И. Ленина: «Исторические заслуги судятся не по тому, чего не дала исторические деятели сравнительно с современными требованиями, а по тому, что они дала нового сравнительно с своими предшественниками»[57].

    И с этой единственно правильной исторической точки зрения заслуги Ломоносова перед мировым естествознанием поистине огромны и необъятны. Ломоносов занимал самые передовые материалистические позиции в естествознании своего времени. В нашей стране поднялся гигант, который непримиримо нападал на метафизическое понимание природы, отвергал метафизические лжематерии и утверждал правильное представление о мире, каким тот был в действительности, без всяких посторонних примесей.

    сила доказательств, теоретическая глубина и конкретность изложения. Жизненные элементы русского народного опыта Ломоносов сочетал с могущественными запросами и стремлениями новой науки.

    Ломоносов был последовательным естественнонаучным материалистом своего века. Проделанная им мыслительная работа явилась новым этапом в развитии материалистического понимания природы. Создавая свою физическую систему, Ломоносов шел своим собственным путем. «Я хочу основать объяснения природы на некоем определенном принципе, мною самим выдвинутом, дабы знать, насколько я могу ему доверять», — записывает он в начале сороковых годов XVIII века. Он отдает себе отчет в том, что это сопряжено с огромными усилиями, причем главная трудность не в том, чтобы оторваться от привычных представлений, а в нахождении единого и всеобщего принципа. «Как трудно установить первоначальные принципы: ведь что бы ни препятствовало, мы должны как бы одним взглядом охватить совокупность всех вещей». Ломоносов тщательно взвешивает и выверяет исходное положение развиваемых им принципов. «От не вполне правильной системы основных положений много дурного вошло в медицину и другие науки». Величественная система природы, создаваемая Ломоносовым, с каждым годом приобретала все более отчетливые очертания. Ломоносов вполне осознал свои материалистические позиции по отношению ко всем основным вопросам естествознания. В конце жизни он задумал систематически изложить свое понимание природы. В «Росписи» своих трудов, которую он составил в 1764 году и приложил к письму, отправленному им М. И. Воронцову, указано: «Сочиняется новая и верно доказанная система всея физики». Книга должна была подвести итог всей жизни Ломоносова, всех его естественнонаучных и философских размышлений: «Историческое познание, философское и математическое как бы будут у меня». Он хочет особо подчеркнуть: «что я не торопился… более двадцати лет я на суше и на море искал веских возражений».

    Материалистическая концепция природы Ломоносова основана на принципе всеобщей связи и взаимной причинной обусловленности явлений. Ломоносов настойчиво пишет в своих черновых набросках к этой книге: «согласное войско причин», «причины согласуются и связаны между собой», «согласный всюду голос природы». Ломоносов изгоняет из своего понимания природы все мистические и метафизические объяснения и оставляет только всеобщий закон причинности. «Согласие всех причин — есть наиболее устойчивый закон природы», — утверждает он. При этом нужно исходить только из тех причин, которые заложены в самой природе, а не искать их за ее пределами. «Природа в высшей степени упорна в своих законах даже в мелочах, которыми мы пренебрегаем. И малейшего не должно приписывать чуду».

    «Согласие причин» в понимании Ломоносова — это упорядоченность «естества», взаимная зависимость законов, управляющих явлениями природы. Природа в основе своей проста, ибо в ней действуют единые и согласованные между собой причины. «Натура тем паче всего удивительна, что в просторе своей многохитростна, и от малого числа причин произносит неисчислимые образы свойств, перемен и явлений», — говорит Ломоносов в 1757 году в своем «Слове о происхождении Света». Мир предстает перед ним как единое целое в своем непрестанном возникновении и исчезновении, во взаимной связи и сцеплении естественных причин. В физике и в геологии, во всех науках, которыми занимался Ломоносов, он проводит идею развития, изменчивости мира. Эта идея была совершенно чужда западноевропейскому естествознанию во времена Ломоносова. Физический мир Ньютона не знал идеи развития. Не знала его и геология XVIII века.

    Мы с полным правом можем говорить о превосходстве Ломоносова над общим уровнем современной ему науки, занимавшейся изучением природы.

    причинной связи явлений и идее непрерывного развития.

    Он хорошо сознавал, что идет по новому, непроторенному еще пути. С гордым чувством независимости он подчеркивает самостоятельность своего научного творчества. Среди его заметок на латинском языке по теории электричества выделяются пламенные слова, написанные им по-русски:

    «Сами свой разум употребляйте. Меня за Аристотеля, Картезия, Невтона не почитайте. Ежели вы мне их имя дадите, то знайте, что вы холопи, а моя слава падет c вашею».

     

    6. ЗА ЧЕСТЬ РУССКОЙ НАУКИ

    Ломоносов, смело и решительно отвергавший метафизические заблуждения своего века, значительно превосходил подавляющее большинство своих ученых западноевропейских современников. Только отдельные выдающиеся умы, подобно Леонарду Эйлеру, понимали значение гигантских усилий Ломоносова. Эйлер писал в августе 1748 года президенту Академии наук Кириле Разумовскому:

    «Позвольте, Милостивый Государь, передать Вашему Сиятельству ответ господину Ломоносову об очень деликатном вопросе Физики; я никого не знаю, который был бы в состоянии лучше развить этот щекотливый вопрос, чем этот гениальный человек, который своими познаниями делает честь настолько же Императорской Академии, как и всей нации».

    Эйлер испытал на себе воздействие идей Ломоносова и разделял некоторые его физические взгляды. Ученые труды Ломоносова вовсе не оставались безызвестными в Западной Европе, как это иногда еще думают. Напротив, они привлекали к себе большое внимание. Не только диссертации и «рассуждения» Ломоносова на специальные темы, печатавшиеся по-латыни в «Комментариях» Петербургской Академии наук, но и произносимые им на торжественных собраниях академиков различные «Слова», в которых он развивал свои теоретические положения, в переводе на латинский и немецкий языки попадали в большом числе экземпляров за границу. Ломоносов был почетным членом Болонской и Шведской Академии наук. О его трудах писали в Стокгольме, Париже и Флоренции. Немецкие газеты, выходившие в наиболее крупных университетских городах, регулярно помещали краткие рефераты и отчеты о его выступлениях, опубликованных и даже еще готовившихся к опубликованию трудах. Но заметки эти содержали по большей части или сухую информацию, или откровенные колкости по адресу Ломоносова.

    Многие западноевропейские ученые, все еще привыкшие с пренебрежением относиться ко всему тому, что идет из России, сталкиваясь с ростками самостоятельной мысли, да еще идущими вразрез с их собственными воззрениями, встречали их со все большим недоумением и неприязнью. И как только взгляды Ломоносова стали относительно широко известными, против них начался форменный поход. Еще в 1752 году в «Лейпцигском ученом журнале естествознания и медицины» появился пространный и крайне недоброжелательный отзыв на теорию теплоты Ломоносова. Затем в «Ученых Ведомостях», помещаемых как приложение к газетке «Гамбургский беспристрастный корреспондент», в номере от 22 ноября 1754 года появилось сообщение, что в Эрлангене некий магистр Иоганн Арнольд защищал диссертацию на собрании философского факультета. Темой диссертации он избрал опровержение теории теплоты Ломоносова. Арнольд, по словам газетной заметки, сокрушил «нововыдуманную» теорию Ломоносова, по которой «якобы теплота состоит в скором обращении маленьких частиц тела около их оси», попутно отвергая и высказанный Ломоносовым закон сохранения движения. «Ежели б вертение частиц около их оси почитать единственною причиною воспаления (то есть воспламенения), — писал Арнольд, — то б по основаниям г. Ломоносова иногда и целая куча пороха не загоралась. Ибо он думает, что всякое тело может сообщать другому телу не большее движение, но какое само оно имеет». «Ежели б так сие было, — издевательски продолжает Арнольд, — то б коловратное движение, которое одна частица другой, а сия третьей и так далее сообщают, от часу тише и слабее становилось, а наконец бы и совсем перестало; следовательно, и теплота Ломоносова купно б с тем движением пропала; но сие печально б было наипаче в России».

    Выходка Арнольда возмутила Ломоносова. В письме к Эйлеру от 28 ноября 1754 года Ломоносов говорит, что издатель лейпцигского журнала «не столько из любви к науке, сколько по недоброжелательству напал на мои труды». Это выступление задало тон целой враждебной кампании против Ломоносова.

    «не без основания подозревать, что столь незаслуженные и оскорбительные клеветы распространяются коварством какого-то заклятого моего врага и что тут-то зарыта собака». Ломоносов просит Эйлера помочь ему опубликовать составленное им (еще в августе 1754 г.) возражение и принимает издержки на свой счет.

    … для Петербурга. «Подозревая, что и здесь есть немаловажные особы, которые принимают участие в таком моем опорочивании».

    Подозрения Ломоносова, что травля его в значительной мере была организована из Петербурга, имели полное основание.

    Шумахер и держащие его сторону придворные круги всеми силами старались подорвать растущий авторитет Ломоносова. Для этого как раз надо было получить отрицательный отзыв о нем из-за границы, что должно было произвести впечатление даже на П. И. Шувалова, покровительствовавшего Ломоносову. Расчет был верен. Даже в кругах святейшего синода проявили интерес к отзыву лейпцигского журнала. И когда в 1757 году по Петербургу распространился анонимный пасквиль на Ломоносова, по-видимому вышедший из среды высшего духовенства, в нем ссылались на «Лейпцигские комментарии».

    Тем важнее было для Ломоносова отбить эти попытки опорочить его одновременно в России и за границей. Он ревниво относился к своей чести, потому что не отделял ее от чести и достоинства своего народа. Он отлично знал, что все, что шло из России, в особенности от «прирожденных россиян», встречалось слишком многими на Западе весьма недоброжелательно. Ломоносов хотел пробить брешь в надменном игнорировании русской культуры, разрушить умышленно поддерживаемое в Европе мнение о неспособности русского народа к научному творчеству. Вся его деятельность была блестящим подтверждением героической одаренности великого русского народа. Ломоносов не мог допустить, чтобы его научные труды не только систематически замалчивались на Западе, но и подвергались незаслуженному поношению. И он пишет горячую отповедь самонадеянным зарубежным писакам — статью «О должности журналистов», которую ему при содействии Эйлера удается напечатать во французском переводе (оригинал был написан Ломоносовым по-латыни) в выходящем в Амстердаме ученом журнале, издававшемся берлинским академиком Ж. Формеем.

    В этой статье Ломоносов не только защищает свою теорию теплоты. Он ставит общие вопросы о задачах и методах научного исследования, говорит о необходимости широкого философского подхода к научным проблемам и отстаивает право на построение разумных гипотез. Он вскрывает мелочность, узость и отсутствие подлинного научного кругозора у автора направленной против него статьи. «Господин Ломоносов», говорится там, «хочет достичь чего-то большего, чем одни опыты», — приводит он слова своего противника и возмущенно спрашивает: «Как будто физик действительно не имеет права подняться над рутиною и манипуляциями опытов, как будто он не призван подчинить их рассуждению, чтобы от них перейти к открытиям. Будет ли, например, химик осужден вечно держать щипцы в одной руке и тигель в другой и не сметь ни на минуту отвернуться от углей и золы?»

    подобная недобросовестная и самоуверенная «критика». Ломоносов до глубины души возмущен продажностью и беспринципностью тех журналистов, которые смотрят «на свое авторство, как на ремесло и на средство к пропитанию, вместо того чтоб иметь в виду точное и основательное исследование истины». «Журналист сведущий, проницательный, справедливый и скромный сделался чем-то вроде феникса», — восклицает Ломоносов. «В потоке литературы смешана истина с ложью, верное с неверным». Ломоносов предупреждает, что при таком положении «сама наука подвергается опасности лишиться всякого доверия». Ломоносов ставит вопрос о моральном кодексе ученого и критика, о качествах, необходимых для занятия журналистикой и в особенности разбором ученых трудов. «Кто берется сообщать публике содержание новых сочинений, должен наперед взвесить свои силы, ибо он предпринимает труд тяжелый и весьма сложный, которого цель не в том, чтобы передавать вещи известные и истины общие, но чтоб уметь схватить новое и существенное в сочинениях, принадлежащих иногда людям самым гениальным».

    Он требует от всякого, пишущего об ученых предметах, основательного с ними знакомства, осведомленности и добросовестности: «кто уже раз берется за то, должен вполне ознакомиться с мыслями автора, разобрать все его доказательства и противопоставить им действительные возражения и основательные доводы, прежде «ежели он присвоит себе право осуждать другого. Одни сомнения и произвольные вопросы не дают этого права, ибо нет такого невежды, который не мог бы предложить гораздо более вопросов, нежели сколько самый сведующий человек в состоянии разрешить».

    Ломоносов указывает на необходимость для критики избавиться от слепой приверженности к традиции и укоренившимся предрассудкам: «Чтоб быть в состоянии произнести приговор искренний и справедливый, надобно освободить свой ум от всякого предрассудка, от всякого предубеждения и не требовать, чтобы авторы, которых мы беремся судить, рабски подчинялись идеям, господствующим над нами».

    Ломоносов писал свою статью в обстановке искусственно раздувавшегося в Западной Европе пренебрежения и неприязни к творческим усилиям русского народа. В постоянных нападках, которым подвергался он сам лично, он видел стремление унизить в его лице русскую культуру. Ломоносов видел, что его труд отвергают только потому, что он написан русским человеком. Ломоносов первый поднял в зарубежной печати голос протеста против злонамеренных иностранцев, набивших руку на клевете и поругании всего русского. Его выступление отразило то справедливое национальное негодование, которое впоследствии побудило и А. С. Пушкина сказать, что русский народ составляет «вечный предмет невежественной клеветы писателей иностранных».

    Примечания

    — в данном случае в смысле: «по причине», «вследствие».

    40. Дочь Ломоносова Елена родилась 21 февраля 1749 года.

    41. Атанор — химическая печь (от французского athanor).

    42. При описании научной деятельности Ломоносова мы не придерживаемся строго хронологического порядка, так как это привело бы к чрезвычайной пестроте изложения, а по возможности посвящаем каждой отрасли знания, в которой работал Ломоносов, одну основную главу.

    43. Еще в 1674 году английский химик Джон Майов (1643–1679) высказал предположение, что увеличение веса сурьмы при кальцинировании (обжиге) происходит за счет «селитряных частиц», содержащихся в воздухе. Труды Майова были вскоре забыты и о них вспомнили только в конце XVIII века. Несомненно, что Ломоносов пришел к своим выводам об увеличении веса металлов при обжиге совершенно самостоятельно.

    –249 и 262–264. Ломоносов высоко ценил поэму Лукреция и переводил из нее отрывки, один из которых он поместил в своем руководстве «Первые основания металлургии, или рудных дел».

    45. Цитировано по книге: М. В. Ломоносов, Физико-химические работы, 1923, стр. 108. (Примечания Б. Н. Меншуткина.)

    46. Ф. Энгельс, Диалектика природы, 1948, стр. 162.

    47. Ф. Энгельс, Диалектика природы, 1948, стр. 166.

    48. Ф. Энгельс, Диалектика природы, 1948, стр. 193.

    50. Л. А. Чугаев, Открытие кислорода и теория горения. П., 1919, стр. 59.

    51. А. И. Герцен, Избранные философские сочинения. М., 1940, стр. 66.

    52. А. И. Герцен, Избранные философские сочинения. М., 1940, стр. 74.

    53. До известного времени теория теплорода (как и флогистона) была плодотворна, ибо объединяла в систему различные тепловые явления. «Физика, в которой царила теория теплорода, — замечает Ф. Энгельс, — открыла ряд в высшей степени важных законов теплоты. В особенности Фурье и Сади Карно расчистили здесь путь для правильной теории, которой оставалось только перевернуть открытые ее предшественницей законы и перевести их на свой собственный язык». Ибо это была, по словам Энгельса, одна из тех теорий, «в которых отражение принимается за отражаемый объект и которые нуждаются поэтому в подобном перевертывании» (Ф. Энгельс, Диалектика природы, 1948, стр. 28–29).

    своих суждений. Открытия Юнга и затем Френеля, доказавших волновые свойства света, сделали невозможным существование корпускулярной теории света в ее прежнем виде. В то же время поиски вещественной среды (эфира), продолжавшиеся до конца XIX века и даже в XX веке, оказались безрезультатными, что привело к крушению также и механической теории волн. Решение этих вопросов было найдено лишь в новейшей теории фотонов (см. С. Вавилов, Диалектика световых явлений. «Под знаменем марксизма», 1934, № 4, стр. 69–70).

    55. Приведено в книге: С. И. Вавилов, Исаак Ньютон (второе издание), 1945, стр. 148.

    56. С. И. Вавилов, В. И. Ленин и современная физика. «Успехи физических наук», т. XXVI, вып. 2, 1944, стр. 117.

    57. В. И. Ленин, Сочинения, изд. 4-е, т. 2, стр. 166.

    Раздел сайта: